Search results

Search for "synthesis of metal nanoparticles" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

New trends in nanobiotechnology

  • Pau-Loke Show,
  • Kit Wayne Chew,
  • Wee-Jun Ong,
  • Sunita Varjani and
  • Joon Ching Juan

Beilstein J. Nanotechnol. 2023, 14, 377–379, doi:10.3762/bjnano.14.32

Graphical Abstract
  • works involving the synthesis of metal nanoparticles using environmentally friendly wet chemical methods in which carrageenan is the main resource. The review summarises the possibility of creating a safe and non-toxic path to the synthesis of nanomaterials while maintaining its properties, such as
PDF
Editorial
Published 27 Mar 2023

The role of deep eutectic solvents and carrageenan in synthesizing biocompatible anisotropic metal nanoparticles

  • Nabojit Das,
  • Akash Kumar and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2021, 12, 924–938, doi:10.3762/bjnano.12.69

Graphical Abstract
  • biocompatible nature. Green synthesis of metal nanoparticles for biomedical applications has gained momentum recently due to their inherent nontoxicity. Although they are biocompatible, these metal nanoparticles lack monodispersity, high yield, and controlled morphology, which are essential criteria for the
PDF
Album
Review
Published 18 Aug 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • seen as an opportunity to utilize plants and their components for the reduction of metal cations and synthesis of metal nanoparticles such as AgNPs. The synthesis of AgNPs by plants and their components may be categorized into in vivo and in vitro synthesis processes [140]. The in vivo synthesis refers
PDF
Album
Review
Published 25 Jan 2021

One-step synthesis of carbon-supported electrocatalysts

  • Sebastian Tigges,
  • Nicolas Wöhrl,
  • Ivan Radev,
  • Ulrich Hagemann,
  • Markus Heidelmann,
  • Thai Binh Nguyen,
  • Stanislav Gorelkov,
  • Stephan Schulz and
  • Axel Lorke

Beilstein J. Nanotechnol. 2020, 11, 1419–1431, doi:10.3762/bjnano.11.126

Graphical Abstract
  • group metals) required for electrode materials produced by conventional synthesis approaches is still cost-inefficient for broader commercial application [4][5]. Furthermore, since surfactants (capping agents) are typically applied in the traditional wet chemical synthesis of metal nanoparticles in
PDF
Album
Supp Info
Full Research Paper
Published 17 Sep 2020

Functionalized platinum nanoparticles with surface charge trigged by pH: synthesis, characterization and stability studies

  • Giovanna Testa,
  • Laura Fontana,
  • Iole Venditti and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1822–1828, doi:10.3762/bjnano.7.175

Graphical Abstract
  • colloidal system. Keywords: functionalized platinum nanoparticles; pH responsive materials; synthesis of metal nanoparticles; thiol functionalization; Introduction Metal nanoparticles (MNPs), in particular, platinum nanoparticles (PtNPs) offer a wide range of chemico-physical properties that can be of
PDF
Album
Full Research Paper
Published 24 Nov 2016

Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

  • Paolo Prosposito,
  • Federico Mochi,
  • Erica Ciotta,
  • Mauro Casalboni,
  • Fabio De Matteis,
  • Iole Venditti,
  • Laura Fontana,
  • Giovanna Testa and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1654–1661, doi:10.3762/bjnano.7.157

Graphical Abstract
  • on the control of the size and shape of nanoparticles [34][35], which is crucial in tuning their physical, chemical and optical properties [36][37][38]. Electrochemical, photochemical, sonochemical and chemical reduction methods can be used for the synthesis of metal nanoparticles [39][40][41][42][43
PDF
Album
Full Research Paper
Published 09 Nov 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • reading out the maximum signal of the band at 1175 cm−1 and subtracting the signal at 1130 cm−1 as background. Results and Discussion Among various plant materials applied for green synthesis of metal nanoparticles, also the use of onion extract for the preparation of gold and silver nanoparticles has
PDF
Album
Full Research Paper
Published 09 Jun 2016

Influence of stabilising agents and pH on the size of SnO2 nanoparticles

  • Olga Rac,
  • Patrycja Suchorska-Woźniak,
  • Marta Fiedot and
  • Helena Teterycz

Beilstein J. Nanotechnol. 2014, 5, 2192–2201, doi:10.3762/bjnano.5.228

Graphical Abstract
  • composition, and a non-ionic surfactant. The influence of the individual reactants as well as the solution acidity on the dimensions of the resulting nanoparticles was analysed. The understanding of the interaction between these components of the solution is critical both for the synthesis of metal
  • nanoparticles as well as metal oxides with semiconducting properties, including tin dioxide. Results and Discussion Analysis of received SnO2 nanoparticles (basic solution) The aqueous solution in which the precipitation reaction for tin dioxide was carried out contained a tin(IV) chloride precursor
PDF
Album
Full Research Paper
Published 20 Nov 2014

One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer

  • Arkadius Maciollek and
  • Helmut Ritter

Beilstein J. Nanotechnol. 2014, 5, 380–385, doi:10.3762/bjnano.5.44

Graphical Abstract
  • ][13]. In the synthesis of metal nanoparticles the use of polymers as external steric or electrosteric stabilizer is an established method to control the particle growth, limit oxidation and stabilize the nanoparticle dispersion [5][14][15][16]. However, there are only a few examples for polymers
PDF
Album
Full Research Paper
Published 31 Mar 2014
Other Beilstein-Institut Open Science Activities